I UCLouvain

Ecole polytechnique de Louvain

TDGD
Test-Driven Game Development

Author: Chiara Emanuela ZARRELLA
Supervisors: Prof. Eric PIETTE, Prof. Kim MENS
Academic year: 2024 /2025

il

CONTENTS

Introduction 1
Background 5
2.1 General Game AL. L 5
2.2 Game Description Languages L. 7
2.3 Ludii: A Complete General Game System 7
2.3.1 The Ludemic Approach 8
232 LudiiSystem. 9
233 Concepts. 11
2.4 TDD: Test-Driven Development 12
24.1 TDD in Game Development 13
Test Identification and Organizational Design 15
3.1 Analysisof Tests. L L 15
3.1.1 Compile-time Tests. 15
312 Run-timeTests. 0oL 16
3.2 Identificationof Testso 17
321 StaticTests. Lo 18
322 DynamicTests.o 18
3.3 Organizationof Tests. L. 20
Testing framework prototype 23
4.1 Architecture Lo 23
411 Model 24
412 View. e 26
413 Controller 28
4.2 Implementationdetails. Lo L Lo 30
421 Reflection 30
4.2.2 Custom Annotation 31
4.2.3 Discovery and Execution with JUNIT5 components. 32
Validation 35
51 GUIvalidation 35
5.2 Test Generality Validation 36
Future Work 41
6.1 Static Tests Refinement. L. 41
6.2 DynamicTests. 41
6.3 Dashboard Enhancements 42

6.4 Customizable Tests Creation 42

iv CONTENTS

7 Conclusion 45
References 47
Glossary 53
Figures 55

Code Listings 57

INTRODUCTION

INTRODUCTION

Since the earliest days of human civilization, games have played a fundamental role in
culture and society. They combine reasoning, strategy, and enjoyment: attributes deeply
intrinsic to human nature. With the advent of computing and the rapid evolution of
programming languages, games have also become a significant subject in various research
domains.

One of the most prominent areas is General Game Al This field focuses on the analysis,
generation, and design of games through artificial agents [1, 2]. These agents, referred
to as General Game Playing (GGP) agents [3], are designed to play multiple games by
understanding their rules rather than being hardcoded for specific ones.

Over time, these agents have been incorporated into broader frameworks known as General
Game Systems (GGS) [4], platforms capable not only of playing but also of supporting
game design, teaching, and experimentation with new games. Among the most notable of
these systems is Ludii [5], the platform that forms the basis of this thesis.

At present, Ludii includes 1,409 games’, including reconstructions of ancient and traditional
games, modern games, and experimental games. This rich library makes Ludii particularly
appealing to historians and scholars of cultural heritage interested in understanding or
preserving historical gameplay.

Ludii is distinguished by its unique Game Description Language (GDL), built upon the
concept of ludemes [6]: atomic, human-readable units of game-related information. By
combining ludemes hierarchically, users can describe a wide variety of games concisely and
in a manner close to natural language. Such ludeme-based approach makes Ludii accessible
not only to computer scientists, but also to game designers, historians, and researchers in
the humanities, many of whom may not possess a background in computer programming
but are still able to meaningfully contribute by encoding games.

To support this accessibility, Ludii offers a Graphical User Interface (GUI) that includes
an integrated game editor and a visual game board, along with a collection of Al agents
[7]. These features allow users to develop, play, and evaluate games directly within the

!github.com/Ludeme/Ludii

https://github.com/Ludeme/Ludii

2 1 INTRODUCTION

platform, either against artificial opponents or by observing automated matches between
different agents.

Despite the accessibility offered by Ludii’s ludeme-based language, developing games within
the platform remains a non-trivial task, especially for users with no formal background in
computer science. While ludemes simplify the writing of game descriptions, users still face
challenges: Ludii’s GDL has its own syntactic and semantic rules, which must be learned
and respected.

Errors in rule encoding, misinterpretation of game mechanics, or subtle inconsistencies in
ludeme usage can easily result in flawed implementations. Although the system includes a
syntax validator, semantic errors frequently go unnoticed. A game may compile without
errors but fail to play correctly. This places a considerable burden on the developer, who
must engage in time-consuming manual debugging.

In traditional software development, this problem is mitigated by testing frameworks,
which allow developers to verify system behavior through automated tests. Unfortunately,
Ludii currently lacks such a framework for its GDL, leaving developers without structured
tools to validate their implementations during development.

This thesis explores whether the established methodology of TDD can be adapted to the
domain of general game development. We refer to this adaptation as Test-Driven Game
Development (TDGD).

TDD [8] is based on writing a test before implementing the corresponding feature or
functionality. The process follows a simple cycle:

1. Write a failing test that captures the intended behavior.
2. Write the minimum code necessary to pass the test.
3. Refactor the implementation and the test to improve clarity and maintainability.

This methodology aligns naturally with the incremental and modular nature of game
development. In Ludii, a game is generally structured in terms of major components such
as Players, Equipment, and Rules, each of which is represented by specific ludemes. A
Ludii developer typically starts by defining the players, then proceeds to the equipment,
and finally encodes the rules.

A testing tool that supports and encourages this iterative process (validating each compo-
nent as it is introduced) would represent a significant improvement in Ludii’s development
ecosystem. Such a tool could not only reduce implementation errors but also serve as a
learning companion, helping new users understand Ludii’s GDL through well-defined and
testable examples.

The goal of this work is to provide a dashboard extension to the existing Ludii GUI, along
with an integrated database of tests, to support Ludii developers in adopting a TDGD
approach.

The dashboard is designed to allow developers to run tests multiple times across different
stages of development, enabling early validation and iterative refinement of their work.
Additionally, the system will provide meaningful feedback when tests fail, helping users
identify and resolve errors in their game definitions effectively. The supported tests span
different categories, including those verifying semantic rules and game-specific behaviors.

The ultimate objective is to offer a user-friendly tool that enables both the reuse of pre-
defined tests and the creation of custom tests. Given that many Ludii users may lack a
background in computer science, particular attention is devoted to ensuring the acces-
sibility of the system. For instance, test names and failure messages must be clear and
self-explanatory.

This thesis is organized as follows:

Chapter 2 introduces the concepts of GGP and GGS. It presents the Ludii platform
and the TDD methodology.

Chapter 3 provides a taxonomy of the tests supported by the framework and how
they are organized within the project, analysing the types of errors and mistakes
that Ludii developers may encounter.

Chapter 4 defines the proposed solution, offering a detailed explanation of the
implemented prototype of the testing framework. It covers both high-level design
aspects and technical implementation details.

Chapter 5 presents a validation of the system, evaluating the graphical user interface
and the database of implemented tests.

Chapter 6 discusses possible enhancements to the current prototype of the testing
framework.

Chapter 7 summarizes the contributions and findings of this thesis.

BACKGROUND

This chapter presents the foundational background for the work presented in this thesis. It
begins by introducing the concepts of GGP [9, 10] and GDL, providing the necessary context
for understanding the domain. Subsequently, it presents an overview of the General Game
System Ludii [5], based on a ludemic representation of games [6, 11]. The chapter concludes
with a discussion of TDD and its applicability to the domain of games, highlighting how it
can support the development and validation of game implementations.

2.1 GENERAL GAME Al

GGP is a prominent area of research in Artificial Intelligence (AI) focused on the devel-
opment of systems capable of playing a wide variety of games based solely on formal
descriptions [3]. These systems are not programmed with the specific rules or strategies
of any game. Instead, they must interpret the game’s rules from a textual description and
make decisions in real-time, akin to a human encountering a new game for the first time.
A general game player must operate under uncertainty, manage time constraints, and
reason about the potential actions of opponents. As a consequence, it must be able to
interpret the rules, analyze the current game state, and select the most promising moves
using only the information extracted from the provided game description.

GGP is sometimes considered a stepping stone towards Artificial General Intelligence (AGI)
[12], which may be summarized as the development of Al that can accomplish general
tasks, not necessary restricted to games. Nevertheless, games provide an ideal domain
for such research [13], as they involve strategic reasoning, decision making, and learning
capabilities that are essential to AGIL

GGP systems rely on formal game descriptions written in GDLs, which serve as a bridge
between a game’s abstract representation and the mechanisms required for reasoning and
gameplay.

Beyond GGP, General Game Al also includes other aspects such as the analysis, modelling
[1, 14], and generation of new games [2]. In this broader field, GGP serves as a supporting
tool, reflecting an expanding view of its potential impact and utility. Within this extended
context, the focus shifts toward GGS [4].

6 BACKGROUND

A GGS is a software environment designed to host and manage a variety of games, often
integrating GGP agents for the purpose of analysis, strategic evaluation, or automated
game generation. Several GGSs have been developed, each with different goals and levels
of expressiveness. Below is an overview of some notable systems:

« Smart Game Board [15]: originally designed for the game of Go', was later extended
to support Othello?, Chess®, and Nine Men’s Morris?. This system features a graphical
interface aimed at facilitating the study and teaching of games, with features such as
trial recording and testing new strategies.

5

Zillions of Games’: a commercial platform enabling users to define and play a wide
variety of abstract board games and puzzles. It supports a proprietary rule language,
the Zillions Rules File (ZRF), which functions as a GDL.

+ GGP-Base® [16]: developed at Stanford University, GGP-Base is one of the earliest
frameworks for GGP. It introduced the original GDL and provides infrastructure for
developing, testing, and evaluating GGP agents. The framework has been founda-
tional to numerous academic projects and international competitions. Such com-
petition led to multiple champions illustrating original techniques or approaches,
such as the latest one WoodStock [17] which combined contraint programming and
learning techniques [18, 19].

+ Regular Boardgames (RBG) [20]: both the system and its associated GDL are
referred to as RBG. This framework is designed to describe a broad class of de-
terministic, perfect-information board games, with a focus on expressiveness and
computational efficiency.

Openspiel’ [21]: a research-oriented framework targeting extensive-form games
with imperfect information. Unlike other systems, it does not define a standalone
GDL; instead, games are implemented directly using Python APIs.

« Polygames® [22]: developed by Facebook AI Research (FAIR), Polygames is a frame-
work for training deep learning agents through self-play. It does not use a formal
GDL; instead, games are implemented in C++ and Python. Its focus is on optimiz-
ing performance for specific games, such as Go or Hex °, rather than supporting
generalization.

Among the systems presented, GGP-Base and RBG stand out as they define their own GDL,
in addition to providing environments for running general game players. These two will
be used as reference points in the following section to introduce and compare different
GDL approaches.

en.wikipedia.org/wiki/Go_(game)
en.wikipedia.org/wiki/Reversi
en.wikipedia.org/wiki/Chess
4en.wikipedia.org/wiki/Nine_men’s_morris
Szillions-of-games.com

¢ github.com/ggp-org/ggp-base

7 github.com/google-deepmind/open_spiel
8github.com/facebookarchive/Polygames
®en.wikipedia.org/wiki/Hex_(board_game)

1
2
3

https://en.wikipedia.org/wiki/Go_(game)
https://en.wikipedia.org/wiki/Reversi
https://en.wikipedia.org/wiki/Chess
https://en.wikipedia.org/wiki/Nine_men's_morris
https://zillions-of-games.com
https://github.com/ggp-org/ggp-base
https://github.com/google-deepmind/open_spiel
https://github.com/facebookarchive/Polygames
https://en.wikipedia.org/wiki/Hex_(board_game)

2.2 GAME DESCRIPTION LANGUAGES 7

2.2 GAME DESCRIPTION LANGUAGES

As discussed in the previous section, GGP systems rely on formal descriptions of games
written in a GDL. The choice of GDL is critical, as it will define the range and complexity
of games a GGP system can support.

GDLs can be categorized broadly into two types: low-level and high-level languages [13].
Low-level GDLs describe games through simple, generic constructs, often but not always
based on first-order logic to specify how the game state evolves. While these languages are
general, they tend to be verbose and unintuitive. Writing, reading, and debugging game
descriptions in low-level GDLs can be challenging and time-consuming.

In contrast, high-level GDLs aim to encapsulate common game concepts using domain-
specific terminology. As a result, game descriptions are more concise and readable, allowing
authors to express complex mechanics with game-oriented constructs. They also lower the
barrier for non-experts, enabling individuals without a technical background to contribute
game descriptions that can be integrated into GGP systems.

For many years, the GDL developed at Stanford’s GGP testbed has served as the standard for
academic GGP research. We refer to this language as S-GDL. S-GDL is a logic programming
language based on first-order logic, and game rules are expressed through sets of logical
clauses. While the S-GDL is capable of describing any deterministic game with perfect
information, subsequent versions (S-GDL-II[23] and S-GDL-III[24]) extend the language
to support hidden-information and epistemic games, respectively. However, the overall
framework still presents several limitations. Fundamental components such as boards
or arithmetic operations must be explicitly defined for each game. Its description can be
difficult to modify and debug; as a consequence, S-GDL is generally classified as a low-level
GDL.

To address some of these issues, the RBG system and language was introduced [20]. Based
on regular language theory, RBG supports both a low-level and a high-level syntax, which
can be mutually converted. As a result, RBG allows for more human-readable game
descriptions and for efficient parsing. It has been demonstrated that RBG can represent all
finite deterministic turn-based games with perfect information, and that it is more efficient
than S-GDL in practice.

2.3 Lupir: A COMPLETE GENERAL GAME SYSTEM

Ludii is a complete General Game System that distinguishes itself from previous systems
through its unique GDL [5]. Unlike other GGSs, Ludii’s GDL is designed not only for
playing games, but also for designing and analysing them [1, 25, 26], as well as for teaching
and learning through them [27].

Ludii emerged from the Digital Ludeme Project (DLP)!°, a five-year research project
launched in 2018 at Maastricht University. The goal of this project was to model the
1000 most influential traditional games in history within a single digital database [28].
This database enables the analysis of relationships between games and their components,
supporting the development of a model for the historical evolution of games [29-31]. As
part of this project, Ludii is capable of modeling and playing a wide variety of traditional
strategy games.

0ludeme.eu

https://ludeme.eu

[E TR SN

8 BACKGROUND

Ludii is an evolution of Ludi [4]. While Ludi supported a wide range of combinatorial
games, it faced limitations. Some games required rules that extended beyond Ludi’s original
GDL capabilities, and the system suffered from performance issues, particularly with legal
move generation and board evaluation in complex games. In contrast, Ludii addresses these
limitations through its class-grammar approach [32] for automated grammar generation
(explored in the next section), and through a Monte Carlo-based move-planning system
that relies solely on a forward model [7].

2.3.1 THE LUDEMIC APPROACH

Ludii’s GDL is based on the concept of ludemes, which are high-level keywords representing
game-related information. These elements include all aspects of a game, such as the board,
players’ pieces, rules of play, and winning conditions. Any aspect that can be described
using a common term in games (e.g. Card, Move, or Mode) can have a corresponding ludeme.
As a result, Ludii game descriptions are self-explanatory and composed of human-readable
terms.

The term ludeme was first introduced by Alain Borvo in the 1970s for his analysis of a
novel card game [33] and was later refined by Cameron Browne [34]. A ludeme has four
key characteristics [34]:

« Discrete: represents a distinct unit of game-related information.

« Transferable: can be reused across different games or other ludemes, either inde-
pendently or as part of a composite structure.

« Compound: may be composed of other ludemes, though it can also be atomic.

« Contrastive: altering a ludeme changes the behavior or structure of the game,
meaning it plays a defining role in shaping gameplay.

A Ludii game description is, therefore, a structured composition of ludemes. Just as a
house is built from individual bricks, a game is constructed ludeme by ludeme, with each
contributing to the game’s rules, structure, and dynamics.

This ludemic approach makes game descriptions clear and straightforward; modifying
a rule or the board design becomes easy [25]. More importantly, it abstracts away the
complex implementation details behind each concept. Unlike other GDLs, such as S-GDL,
which require explicitly writing instructions to update the game state, Ludii encapsulates
these operations within high-level keywords. As a result, descriptions in Ludii are less
verbose, allowing key concepts to be expressed clearly and compactly.

An example of a simple game description using Ludii’s GDL is shown below for the game
Havannah!!:

Example 2.1: Havannah description using Ludeme (Source: github.com/Ludeme/Ludii)

(game "Havannah"
(players 2)
(equipment

(board (hex 8))

Uen.wikipedia.org/wiki/Havannah_(board_game)

github.com/Ludeme/Ludii
en.wikipedia.org/wiki/Havannah_(board_game)

2.3 Lupi: A COMPLETE GENERAL GAME SYSTEM 9

(piece "Marker" Each)

)

(rules
(play (move Add (to (sites Empty))))
(end
(if
(or
{
(is Loop)
(is Connected 3 SidesNoCorners)
(is Connected 2 Corners)
}

(result Mover Win)

The main ludemes are game, players, equipment, and rules, which defines the skeleton of a
game. The (game "Havannah") ludeme assigns a name to the game. (players 2) indicates
that the game involves two participants; by default, each player takes one move per turn,
which is implicit unless specified otherwise. The equipment section specifies the physical
components of the game: an hexagonal board and a type of piece, "Marker" for each player.
Finally, the rules section encodes the game’s logic: players take turns placing a piece on an
empty cell, and the game ends when one of the following three conditions is met:

1. Loop around any site (line 15).
2. Connecting any three edges, excluding corner points (line 16).

3. Make a bridge connection between any two corners (line 17).

2.3.2 LupI1 SYSTEM

The strength of Ludii lies in its class grammar approach [32], which establishes a direct
link between each ludeme and the underlying Java code that implements it. In fact, the
Ludii GDL is automatically generated from the structure of Ludii’s Java source code. As
a result, the system interprets ludeme-based game descriptions by reconstructing the
corresponding Java objects through Java Reflection. This ensures a strict 1:1 mapping
between the grammar used to define games and the internal source code responsible for
their execution [26].

This design makes the programming language itself the game description language. It
also makes Ludii highly extensible: developers can introduce new game concepts by
implementing them as Java classes, provided they adhere to the framework’s formatting
conventions for ludeme constructors.

At the core of the system is the ludeme library, where each ludeme is represented by a
dedicated Java class that implements the Ludeme interface. Figure 2.1 illustrates how these
ludemes are organized into categories. Referring back to the game description of Havannah
in Example 2.1, we can observe clear 1:1 mappings between ludeme keywords and Java
classes (e.g., Game, Players, Rules).

As previously noted, a game in Ludii is composed of a hierarchy of ludemes, forming a tree
structure where each node represents a ludeme. During gameplay, Ludii traverses this tree

10 BACKGROUND

Mode Game Players
Equipment — > SRS <t+—— Functions
Ludeme
Rules Types
Auxiliary

Figure 2.1: Categories of Ludemes [6]

to evaluate the game state and determine legal moves by recursively processing each node’s
logic. For instance, the Context class acts as a central container for the current game session,
maintaining the game state and move history via the State and Trial classes, respectively.
By storing all relevant information in Context and its associated classes, Ludii efficiently
computes which moves are legal, what happens after a move is made and whether a game
has ended, and who won.

Ludii class grammar provides notable advantages, making Ludii stand out with respect to
other GGS [5][35]:

« Simplicity: Ludeme-based descriptions are easy to write and modify. They require
a significantly smaller number of keywords compared to other GGS, allowing quick
experimentation with rule variants or board configurations.

« Clarity: Ludeme-based descriptions are clear and human-readable, thanks to the use
of meaningful keywords. This enhances accessibility, particularly for non-specialist
users, and enables the automatic generation of Board Game Manuals [36].

« Generality: Ludii can support a vast variety of games without requiring structural
changes. Thanks to its class grammar architecture, it can theoretically represent any
game that can be implemented in Java.

« Extensibility: New features or concepts can be easily incorporated into the system
due to its modular design. New functionality is introduced by simply adding Java
classes to the ludeme library, which are automatically integrated into the class
grammar.

2.3 Lupi: A COMPLETE GENERAL GAME SYSTEM 11

« Efficiency: Since developers have direct control over ludeme implementations, they
can optimize games at the code level. This flexibility enables trade-offs between the
length of descriptions and runtime performance.

+ Evolvability: Ludii’s modular structure is well-suited to evolutionary algorithms.
Random combinations or mutations of ludeme trees are more likely to result in
playable and meaningful games than logic-based formats like GDL.

« Cultural Application: Ludii serves as a powerful tool for Digital Archeeludol-
ogy [37-40], enabling the reconstruction, classification, and historical analysis of
traditional games using its integration with a cultural-historical database.

« Universality: Ludii is provably universal [41] not only for finite deterministic
games with perfect information, but also for finite non-deterministic and imperfect-
information games. This ensures that all games expressible in both GDL and GDL-II
can be described using Ludii’s class grammar. Recent research has further extended
this direction by proposing general Al models for imperfect-information games, such
as the Belief Stochastic Game model [42].

2.3.3 CONCEPTS

The notion of concept is fundamental within Ludii. When referring to concepts, we mean
game concepts: features expressed in game-specific terms commonly used by players and
designers, which can be associated with a game or an element of play. In Ludii, a concept
is characterized by a name, a category, a data type, and a computational type [43]. The
chosen name should reflect terminology familiar to human players or game designers
as closely as possible. Figure 2.2 illustrates the main categories to which a concept may
belong. The data type of a concept may be either numerical, which quantifies the concept,

Equipment Behavior

AN £
‘ Play Rules > Rules }—D Concept
YA\
End Rules
Math ‘ Implementation ‘

Properties

Figure 2.2: Categories of Concepts

or binary, which simply indicates its presence. Typically, a binary concept is determined by
the inclusion of one or more ludemes in the game description. A numerical concept, on the

12 BACKGROUND

other hand, is associated with a direct numeric value (e.g., Players 2) or can be derived from
the frequency of binary concepts (e.g. the average number of times a particular terminal
state is reached).

From a computational perspective, concepts are classified based on how their values are
obtained. Compilation concepts are computed at compile time and refer to static elements of
a game (e.g., the dimensions of the board). Conversely, playout concepts require gameplay
and are usually numerical. Their values are derived from statistical analyses over multiple
playouts, for instance, the frequency of occurrence of a specific binary concept.

2.4 TDD: TEST-DRIVEN DEVELOPMENT

TDD [8, 44] is a software development methodology aimed at reducing bugs and encourag-
ing cleaner, more maintainable code. The approach was popularized by software engineer
Kent Beck, who rediscovered its origins in an early programming manual. In that manual,
the author suggested taking an input tape, manually writing the expected output tape, and
then programming until the actual output matched the expected result [45]. Beck adapted
and formalized this idea into what is now known as TDD.

The core principle of TDD is to begin the implementation of a feature or function by first
writing a test that defines its expected behavior. The development process follows a short,
iterative cycle, known as Red-Green-Refactor:

Figure 2.3: Iterative steps of the TDD approach

1. Red phase: write a (failing) test that specifies the desired functionality.
2. Green phase: write the minimal amount of code necessary to make the test pass.
3. Refactor: refactor the code to improve its structure while keeping the test green.

This cycle is repeated continuously, promoting small, incremental changes that are validated
at each step.

2.4 TDD: TEST-DRIVEN DEVELOPMENT 13

TDD provides several benefits [46] that often motivate developers to adopt this approach.
First, it ensures that all new code is covered by at least one test, leading to more robust and
reliable software. As a result, when a change breaks the code, the failure is immediately
visible through the test suite, making bugs easier to locate and fix. Additionally, TDD
encourages clarity, as developers must fully understand the expected behavior before
implementation begins. It promotes modular design by forcing a clear separation of
concerns, since components must be independently testable. Moreover, the need for
extensive debugging is significantly reduced, as errors are caught early in the development
process.

However, TDD is not without drawbacks [46]. It increases the overall volume of code and
requires time and effort to adopt the mindset. Writing tests before implementation may
also seem unnatural or slow at first.

Nevertheless, TDD is widely adopted in enterprise software development, web services,
and backend systems, where the logic is well-defined and modularity is critical. These
domains benefit from TDD’s emphasis on automated testing and early bug detection. In
such contexts, TDD integrates well with continuous integration pipelines, making it easier
to catch regressions early and improve developer confidence. TDD is also common in
libraries and APIs, especially when stability and long-term maintainability are required.
In these cases, writing tests first helps clarify the expected behavior of the interfaces and
reduces the likelihood of introducing breaking changes.

2.4.1 TDD 1N GAME DEVELOPMENT

Despite its proven effectiveness in many software domains, TDD is not widely adopted
in game development. This is largely due to the nature of typical video games, which
often involve visual components [47] such as rendering, animation, real-time interactions,
and user experience. These aspects are difficult to test through automated unit tests
and are inherently subjective and non-deterministic, making it challenging to define
precise expected outputs for automated verification. Furthermore, many game engines and
frameworks promote tightly coupled design which can hinder modularity and testability.
However, this situation changes significantly when considering the development of board
games. In contrast to real-time or graphical games, board games are characterized by
well-defined rules, deterministic mechanics, and discrete states. These traits make board
games particularly suited for TDD. Board games often operate on structured game states,
such as grids or lists of moves, and rely on rule-based logic to determine the legality of
actions or the outcome of a game. These aspects are not only testable but also benefit
from being validated through automated tests. For example, detecting a checkmate in
Chess or verifying the legality of a move in Go are tasks that can be clearly specified,
tested, and repeated consistently. In such scenarios, TDD allows developers to encode
game rules as tests and iteratively refine their implementation, ensuring correctness from
the beginning. Moreover, the deterministic nature of board games allows for consistent
test results across runs, simplifying debugging and reducing the risk of non-reproducible
bugs. Since most game logic can be developed independently from UI and rendering, board
game implementations often achieve better modularity.

In summary, while TDD may pose challenges for general game development, it is particu-
larly well-suited to the domain of board games. Applying TDD in this context enhances

14 BACKGROUND

reliability, maintainability, and clarity of the game logic, making it a valuable methodology
in the development of structured, rule-based games.

15

TEST IDENTIFICATION AND
ORGANIZATIONAL DESIGN

In this chapter, we present the rationale behind the categorization and organization of
tests, with the goal of supporting Ludii developers in effectively applying a TDD approach.
We begin by outlining the different types of tests considered, explaining the reasoning
behind their selection based on the kinds of issues they are intended to detect. We then
discuss how each test type is identified and implemented, distinguishing between static
and dynamic analysis techniques. Finally, we describe how these tests are structured and
integrated into the project, ensuring maintainability, scalability, and alignment with the
overall architecture of the testing framework.

3.1 ANALYSIS OF TESTS

This section presents an analysis of test types identified and evaluated as part of this thesis,
with a focus on determining the suitability of and necessity for compile-time tests, runtime
tests, or a combination of both for the Ludii system. Compile-time and runtime tests
serve different purposes in the software development lifecycle, each with their distinct
advantages and limitations.

3.1.1 COMPILE-TIME TESTS

Compile-time tests are particularly useful for identifying syntax and semantic errors, type
mismatches, and other issues that can be detected without executing the program. These
tests are typically executed during the compilation process, ensuring that the code adheres
to predefined rules and constraints before running. Furthermore, Ludii relies on a custom
class-grammar, compile-time tests could also be valuable for verifying how a game is
structured using ludemes.

The current Ludii system already enforces some grammar rules through an integrated
editor, which provides semantic parsing and uses a colored dot in the top-right corner to
indicate whether the code will compile. However, not all semantic rules are covered by this
functionality. In some cases, code may compile successfully but still be incorrect due to an
unrecognized grammar violation. To illustrate this, consider the following example rule:

16 TEST IDENTIFICATION AND ORGANIZATIONAL DESIGN

When a game has N players, the correct way to reference them is using the syntax P1, P2,
.., PN.

Figure 3.1a shows the standard Ludii editor with an example Tic-Tac-Toe game. As explained
in the previous chapter, a game description consists of three mandatory blocks: Players,
Equipment, Rules. The description correctly declares two players using the ludeme (players
2), meaning that P1 and P2 should be used to reference individual players. The editor

confirms that the code will compile, as indicated by the green dot.

(game "Tic-Tac-Toe"
(players 2)
(equipment

(board (square 3))

(piece "Disc" P1)

(piece "Cross" P2)
}

(rules
(play (move Add (to (sites Empty))))
(end (if (is Line 3) (result Mover Win)))
)
) H

(a) Correct ludeme description

ditor

(game "Tic-Tac-Toe"
(players 2)
(equipment
{
(board (square 3))
(piece "Disc" P1)
(piece "Cross" P3)
}

(rules
(play (move Add (to (sites Empty))))
(end (if (is Line 3) (result Mover Win)))
)

)

(b) Incorrect ludeme description

Figure 3.1: Example of a semantically valid and invalid ludeme description of Tic-Tac-Toe

To evaluate the robustness of the editor, we deliberately introduce an inconsistency in the
game description by referencing P3, despite only two players being declared. As shown in
the figure 3.1b, the dot remains green, meaning the error is not detected by the current
system.

While this specific issue may be obvious to a Ludii developer, similar undetected grammar
violations could be harder to identify in larger or more intricate game descriptions. In
practice, not all errors are as trivial as using an incorrect player reference. Some issues
may involve deeply embedded rules, interactions between multiple ludemes, or subtle
misinterpretations of the intended game mechanics. Without explicit validation, these
errors might go unnoticed until much later in the development process, making debugging
more difficult and time-consuming.

Given these considerations, integrating compile-time tests could provide an additional layer
of verification, helping developers catch grammar-related issues before execution. However,
as we will discuss in the next section, compile-time validation alone is insufficient for
testing gameplay behavior, which is why runtime tests play a crucial role in our framework.

3.1.2 RUN-TIME TESTS
Run-time tests are executed during the program’s execution, allowing for the validation of
dynamic behavior, logic, and interactions that cannot be verified at compile time. Unlike

3.2 IDENTIFICATION OF TESTS 17

compile-time tests, run-time tests do not focus on analyzing the ludeme grammar; instead,
they investigate winning conditions, common play rules, and board design. These aspects
can be particularly challenging to handle, as they often involve complex interactions that
can only be observed after the game has been compiled and executed. Additionally, run-
time tests enable the evaluation of game trials, allowing conditions that appear only during
gameplay to be tested [48]. This makes them particularly useful for ensuring that a game
functions as intended beyond just compiling successfully. The table 3.1 highlights the key
aspects of these two types of testing.

H Aspect

Compile-time

Run-time

Detection Scope

Syntax errors, incorrect
ludeme usage

Rule enforcement, board
interactions, win conditions

Performance No impact on runtime Adds some execution
overhead

Flexibility Limited to grammar analysis | Can cover broad range of
scenarios

Debugging Identifies issues before Provides insights during

execution

gameplay

Table 3.1: Comparison between Run-time and Compile-time tests

From a development perspective, runtime tests align well with TDD because they allow
for progressive validation of game behavior as new features are implemented. Since many
aspects of a game can only be evaluated during execution, runtime tests provide immediate
feedback on whether a feature behaves as expected. Moreover, runtime tests support
incremental refinement, a feature of TDD, ensuring that each modification to the game
logic maintains correctness. By continuously running tests during development, potential
errors are caught early, reducing the need for extensive debugging later.

In conclusion, compile-time tests primarily focus on analyzing how a game is written
using ludemes, ensuring compliance with grammar rules. While valuable, they are also
highly restrictive, as they limit testing to syntax verification rather than assessing gameplay
correctness or overall game design. In contrast, runtime tests offer a broader and more
practical approach. They not only cover board design and gameplay behavior but also
incorporate some checks that compile-time tests would perform dynamically. This makes
them better suited for TDGD, as they provide developers with real-time feedback on game
logic and mechanics. Thus, we opted for runtime tests as they align more closely with the
goals of the framework.

3.2 IDENTIFICATION OF TESTS

We identified two major categories into which our tests fall: Static Tests and Dynamic
Tests.

18 TEST IDENTIFICATION AND ORGANIZATIONAL DESIGN

3.2.1 StaTIC TESTS

As previously discussed, run-time tests can also perform some of the checks traditionally
associated with compile-time validation of the ludeme class grammar. These tests are
referred to as static tests because they are executed only once, when the game is loaded,
and do not rely on any game trials or runtime instances.

Recalling the example provided in Section 3.1.1, where the system failed to notify the
developer about an incorrect use of player identifiers. Static tests aim to catch such issues.
However, their purpose extends beyond grammar validation. They also verify certain
properties and configurations of a game that are determined at load time, right after the
game becomes active. To provide a simple example, consider the correct description of
the Tic-Tac-Toe game in Figure 3.1a. The game’s winning condition is defined using the
Line ludeme followed by a number (e.g., 3 in Tic-Tac-Toe). To ensure this rule is valid,
that number should be less than or equal to the board’s maximum dimension. While it
may seem sufficient to check the maximum dimension of the side of the board declared
in the equipment section, (board (square 3)), that’s not always the case. Not all boards
are square, and many are constructed with complex structures or ludemic rules that make
dimensions non-obvious. Therefore, the maximum board dimension is a value that is
usually computed after the game is loaded. A static test, in this case, can validate that the
win condition is compatible with the actual structure of the board, even if its dimensions
are not directly inferable from the ludeme description.

This illustrates how static tests are essential not just for grammar checks but also for early
validation of game logic that emerges at load time.

3.2.2 Dynamic TEsTS

The other category of tests includes dynamic tests, which are particularly powerful because
they provide diverse feedback and quantitative measures, investigating gameplay conditions
as the game progresses. To perform such tests, game trials are required, as these tests
validate rules, board states, score evolution, and more.

Unlike static tests, which are executed once when the game is loaded, dynamic tests are
executed multiple times during the execution of a game simulation. In Ludii, this is made
possible thanks to the presence of various Al agents, which can simulate thousands of
games automatically [48]. Dynamic tests can begin either from the initial game state or
from a specific state snapshot, depending on what the test aims to evaluate.

Another important consideration is the execution time of these tests. Due to the nature
of simulations, dynamic tests can be significantly longer than their static counterparts,
especially when covering multiple turns or full game trials.

One example of dynamic testing is the verification of score computation for each player. In
the simplest use cases of the score, it corresponds to the number of pieces a player has on
the board. However, Ludii contains numerous games with different and sometimes complex
scoring mechanisms. If not properly handled, these mechanisms may lead to incorrect
outcomes. To clarify this, consider the game Reversi (or Othello). The objective of the game
is for a player to end with the most pieces on the board. Players can capture opponent
pieces, which are "flipped" to the capturing player’s color. Each piece is associated with a
state value (e.g., 1 for Player 1 and 2 for Player 2), and the score is computed based on the
count of each player’s pieces on the board, as shown in the following code.

I I TR CR

3.2 IDENTIFICATION OF TESTS 19

Example 3.1: Computation of score with ludeme description

(set

Score

P1

(count Sites in:(sites State 1))
)
(set

Score

P2

(count Sites in:(sites State 2))
)

If a Ludii developer mistakenly defines the score for both players to depend on the same
state (e.g., both on State 2), then throughout the game both players will always have
identical scores, inevitably ending in a draw. This outcome highlights a logic error, as
shown in the figure 3.2, where the correct score of Player 1, with black pieces, should be 3.

38 Ludii Player - Revers - a8 x
Ludii File Game Navigation Analysis Options Remote Demos View Help

]
®
@ Player 2 (Ludii (MAST)) (3)®
Status Analysis
Player 2 to move
Player 1 to move.
Player 2 to move
Player 1 to move.
Player 2 to move
Player 1 to move
Player 2 to move
K < » o & 0

Figure 3.2: Incorrect computation of score in Reversi

Therefore, with the support of a simulation, a dynamic test for this case should count the
actual pieces on the board after each move, compare it with the score reported by the
system and detect that both players always have the same score.

One of the challenging aspects of dynamic tests lies in interpreting the results and deter-
mining the appropriate length of a simulation. In this example, useful data might include
the number of moves executed, as well as the score evolution at each step. However, a
natural question arises: how long should the simulation be? is it necessary to simulate a
full game, or would a limited number of moves (e.g., the first N moves) be sufficient?

In this case, even a single move can be enough to reveal the error. As a matter of fact,
according to the game rules, after Player 1 makes the first move and captures some of
Player 2’s pieces, their score should increase. If both players still have the same score after
that, it indicates a scoring issue. Thus, the depth of the simulation may depend heavily
on the specific rule being tested. A deep discussion about how to determine the scope of
simulations is provided in Chapter 6.

RS TN ST SR

20 TEST IDENTIFICATION AND ORGANIZATIONAL DESIGN

3.3 ORGANIZATION OF TESTS

In the context of our testing framework, a well-structured organization of tests is essential
to ensure that the system remains functional, scalable, and extensible as it evolves. Ludii
currently comprises over 800 distinct concepts, each representing a specific feature within
the game system. Ideally, each concept should be tested, which implies a growing number
of tests, potentially over 800. Without a modular and clear structure, managing such a large
volume of tests would quickly become demanding, leading to difficulties in debugging,
extending, and maintaining the framework.

To address this challenge, we adopted a structure in which each concept is assigned its
own package. In the current state of the framework, we have only a few tests per concept.
As a result, these are grouped into a single test class per package, named by appending the
suffix Test to the concept name (e.g., BoardTest for the board concept).

This convention is inspired by early versions of JUNIT [49], which recognized test methods
using naming patterns such as testXXX(). Similarly, our framework uses this naming
convention to automatically identify test classes by scanning for those whose names end
in Test. Consequently, the only requirement imposed by our system is that each test class
must conform to the XXXTest naming pattern.

We deliberately adopted a naming-based approach for identifying test classes, as JUNIT
does not provide an explicit mechanism to designate a class as a test class. The available
annotations apply only at the method level. Internally, JUNIT determines whether a class is
a test class by inspecting its contents for annotated test methods. Replicating this behavior
would introduce unnecessary complexity and overhead. By enforcing a naming convention
we restrict the discovery process to classes whose names conform to the XXXTest pattern,
streamlining the identification process and improve performance by avoiding the inspection
of irrelevant classes.

Additionally, concept classes such as Board, Player, and Piece already exist in the main
codebase: using the same names for test classes would create naming conflicts. Our con-
vention avoids this issue while keeping test classes closely aligned with the corresponding
concepts.

An example of the current structure is shown below:

Example 3.2: Test package organization

src/
tests/
board/
BoardTest. java
piece/
PieceTest.java
player/
PlayerTest.java
This organization aligns naturally with the structure of the Ludii system, which is itself
concept-driven. Since concepts are the core units used throughout the platform, assigning
each one dedicated and isolated set of tests reinforces the conceptual boundaries and
enhances traceability.
This design offers several practical advantages. First, it enables automated discovery and ex-
ecution of tests through reflection, a key mechanism of the framework that will be discussed

in section 4.2.1. The naming and directory conventions simplify the aggregation of tests

o e w o e

3.3 ORGANIZATION OF TESTS 21

for execution in the GUI without requiring hardcoded references, as briefly noted earlier.
For instance, the system constructs the fully qualified names of test classes automatically,
and thus depends on this predictable structure to locate and run tests reliably.

Second, this modular architecture significantly reduces coupling between tests. Adding a
new concept only requires the creation of a corresponding package and one or more test
classes that follow the naming convention, making the framework highly extensible with
minimal effort.

Moreover, this structure lends itself to future enhancements, such as support for sub-
concepts. For example, the Shape concept includes variations like HexShape and Square-
Shape. These could be tested in subclasses within the same package, where a base class
ShapeTest tests shared functionality and shape-specific test classes implement additional
validations. An example of how the organization would become follows:

Example 3.3: Test package organization with sub-concepts

src/
tests/
Shape/
ShapeTest. java
HexShapeTest. java
SquareShapeTest. java

In conclusion, the chosen organization ensures a clean separation of concerns and plays a
central role in supporting dynamic test discovery and execution through reflection.

This chapter has detailed the principles guiding the classification and implementation of
tests within the Ludii framework. By differentiating test types and their corresponding
analysis methods, it establishes a clear structure that facilitates effective TDD. The proposed
organization promotes maintainability and scalability, laying a solid foundation for the
testing framework’s integration and future enhancement.

23

TESTING FRAMEWORK
PROTOTYPE

This chapter presents the prototype of our testing framework, designed as a supportive
tool for Ludii developers. The framework aims to facilitate the testing and validation of
Ludii game implementations by providing a structured and automated environment.

The chapter is organized into two main sections: Architecture and Implementation. The
first section provides a high-level overview of the framework’s design, highlighting its core
components and their interactions. The second section delves into the technical details of
the implementation, describing the specific tools employed to realize the framework.

4.1 ARCHITECTURE

This section introduces the architecture of our testing framework. To support scalability,
maintainability, and clean separation of concerns, we decided to structure the framework
using the Model-View-Controller (MVC) design pattern. A brief overview of the pattern is
provided below before discussing how it applies to our specific case.

The MVC is a well-established architectural pattern commonly used in software engineering
to separate the concerns of an application [50]. It divides the application into three main
components:

+ Model: handles the core logic and data of the application. It is responsible for
maintaining the state and rules of the system.

« View: manages the presentation layer. It displays data from the Model and provides
a visual interface for the user.

« Controller: acts as an intermediary between the View and the Model. It handles
user input, updates the Model, and refreshes the View accordingly.

As a reminder, our ultimate goal is to provide a tool for Ludii developers: an interface that
facilitates the selection and execution of both generic and game-specific tests, enabling a
TDGD approach.

24 4 TESTING FRAMEWORK PROTOTYPE

2. Sends user input 3. Requests/Updates test data
Controller

4. Sends test data

5. Updates with
test result

View

6. Displays test result

1. Selects test
Ludii Developer

Figure 4.1: Model-View-Controller architecture for our framework

Given this interactive nature, a clear separation between data, logic, and presentation
becomes essential. The MVC pattern directly supports this need by decoupling the core
functionality from the user interface. For example, when a user selects a test through the
graphical interface, the system must dynamically identify and execute the corresponding
method, process the results, and display the outcome, while maintaining a clean separation
between backend logic and interface components.

Additionally, the Ludii project is under continuous development, with new games, features,
and rules introduced regularly. As a result, the testing framework must be adaptable to
these changes. By adopting the MVC architecture, we ensure modularity and isolation
between components, allowing individual parts of the system to evolve independently. For
instance, enhancements to the View can be made without requiring changes to the Model,
and new testing capabilities can be integrated without affecting the interface.

The following details explain how the architecture integrates with our framework.

4.1.1 MOoDEL

The Model represents the core of our framework, encapsulating the internal representation
of test classes, methods, and parameters. It is responsible for managing the data needed
throughout the lifecycle of test discovery, execution, and result interpretation.

As introduced in Section 3.3, each testable concept is represented by a dedicated test class.
The Model mirrors this structure using three key components, illustrated in Figure 4.2.

« TestClass handles the organisational structure and grouping of tests. It tracks all
test methods belonging to a concept, along with its package name and fully qualified
class name.

« TestMethod stores detailed metadata about each individual test, including its name,
whether the test passed or failed, the duration of the execution, its classification as

4.1 ARCHITECTURE 25

either static or dynamic, and additional runtime information such as failure messages.

« TestParameter records both the expected type of each parameter and its associated

value.

TestClass

TestMethod

-PACKAGE_NAME: String
-methods: List<TestMethod>
-NAME: String

+addMethod(TestMethod m): void
+getFullyQualifiedName(): String
+getSelectedMethods(): List<TestMethod>
+getFullyQualifiedNameForMethod(int id): String
+reset(): void

+hasStaticTests(String concept): boolean
+hasDynamicTests(String concept): boolean

-id: int

-NAME: String

-isSelected: boolean

-isPassed: boolean

-isStatic: boolean

-duration: String

-failureMessage: String
-parameters: List<TestParameter>

+hasDefaultParameters(): boolean
+getFullyQualifiedName(): String

+reset(): void
+parameterWithoutValue(): String

TestParameter
-TYPE: Class<?>
-value: String
-DEFAULT_VALUE: String
-NAME: String
+getFullyQualifiedName(): String
+isDefault(): boolean
+reset(): void

Figure 4.2: Class Diagram of our Model

One interesting design detail is the presence of two fields in the TestMethod: defaultValue
and value. While their purpose might seem similar at first glance, they serve fundamentally
different roles. One reflects the values annotated directly in the source code, while the other
is influenced by user interaction at runtime. This subtle distinction becomes crucial in
dynamically supporting the management of default values in our tests, as will be discussed
in Section 4.2.2

Another notable feature is the construction of a test’s fully qualified name. For those
unfamiliar with the term, a fully qualified name is a dot-separated path that uniquely
identifies a method within the project. For example:

tests.MyTestClass.testExampleMethod(int, String)

This name, formed by combining the class and method signature including parameter
types, may seem like a simple string, but its construction plays a central role throughout
the entire framework. As a matter of fact, this approach is a foundational part of how the
framework dynamically identifies and executes tests.

It’s also worth noting that much of the Model’s functionality is built on top of reflection, a
powerful Java technique for inspecting classes and methods at runtime. While we only
hint at it here, reflection carries many of the framework’s dynamic behaviours and will be
explored in more depth in Section 4.2.1.

Finally, the Model is also responsible for maintaining consistency across multiple test
runs. It provides methods to reset its internal state, ensuring that no stale data persists

26 4 TESTING FRAMEWORK PROTOTYPE

between sessions. This is particularly important when the user re-runs tests with different
parameters or after modifying game definitions.

4.1.2 VIEW

The View represents the visual interface between the user and the testing framework. It
is presented as an integrated dashboard, designed to blend seamlessly into the existing
Ludii interface. Its purpose is to allow developers to interact with the framework in a
user-friendly and intuitive way.

The View interacts with the Controller to fetch the structure and metadata of test classes,
and to update their state based on user interaction or execution feedback.

As shown in Figure ??, the dashboard provides a structured overview of available tests,
clearly distinguishing between static and dynamic tests, and grouping them by concept.
Each test method can be selected individually, and when a method requires parameters,
a dialog is prompted to gather the necessary input. If default values for the parameters
exist, they are pre-filled to improve usability and reduce redundancy. Otherwise, the user
is expected to insert the values manually.

Ludii File Game Navigation Analysis Options Remote Demos View Help

4 Set Parameters for sizeOfTrack X o
@ Player 1 owner:
size: 3
Save
ParameterDialog
Tests
Static Dynamic

board v | board v
piece A | piece v
[] pieceDeclaredAsEach player %

track v
[] pieceDeclaredAsShared

TestMethodRow
] pieceDeclaredAsNeutral
player v
track a
[sizeofTrack | ©
TestCategoryPanel
Reset Run Tests

TestsViow []

e & 0

Figure 4.3: Integrated testing dashboard in the Ludii editor

To support maintainability and scalability, the View has been designed in a modular way.
The entire visual component is wrapped in the TestsView class, which orchestrates the
layout and interaction logic. Internally, the View is composed of several components:

» TestCategoryPanel: responsible for rendering the Static and Dynamic test sections.
« TestClassSection: used to group test methods by concept.

« TestMethodRow: represents individual test entries, along with their execution
status.

4.1 ARCHITECTURE 27

Ludii Player - Surakarta - o X
Ludii File Game Navigation Analysis Options Remote Demos View Help
[
@ Player 1
Turr Tests
static Dynamic

board v board v
plece A plece v
pleceDeclaredAsEach player v

track v

Duration: 38ms Reason: The game does not have any piece declared as Shared
v/ pleceDeclaredAsNeutral
player v
track A
Le]
Save resuits Reset ‘

Figure 4.4: Integrated testing dashboard in the Ludii editor with results

« ParameterDialog: a dedicated dialog window used to collect user input for test
parameters.

This layered organization not only promotes reusability and readability but also enables
future extensions to the View without impacting other components of the framework. For
example, additional test categories or alternative input methods can be incorporated with
minimal structural changes.

Moreover, the View dynamically reflects the outcome of test executions. After running
tests, it highlights whether each test has passed or failed, displays execution time, and, in
case of failure, reports the reason, as shown in figure 4.4.

This feedback loop is crucial to facilitate TDGD, offering clear and immediate insights into
the status of the test suite.

Another key feature offered by the View is the ability to export the results of test executions.
Users can generate a .csv file containing detailed information about each executed test,
including the test name, execution status (pass/fail), duration, and any error messages.
The exported file also includes summary statistics such as overall success rate, average
execution time and the total number of tests.

This functionality is particularly useful for analyzing the progression of development. In
future scenarios, where the test database may become significantly large, the exported file
will allow developers and researchers to gain a comprehensive understanding of which
aspects of a game behave correctly and which do not, especially in the case of complex
games. Furthermore, the .csv file enables external visual analysis through external tools,
making it possible to generate graphs or diagrams that can track trends such as the stability
of test results across different versions of a game.

The following table 4.1 shows how the information are organized when exporting the file,
with the game Tic-Tac-Toe as example.

28 4 TESTING FRAMEWORK PROTOTYPE

H Game Test Name [ET (ms) [Passed [Failure Message Type H
Tic-Tac-Toelud | lineLessOrEqualThanBoardSide 132 true Static
Tic-Tac-Toelud | pieceDeclaredAsShared 30 false The game does not have | Static

any piece declared as
Shared
Tic-Tac-Toelud | pieceDeclaredAsEach 200 false The game does not have | Static
any piece declared as Each
Tic-Tac-Toelud | pieceDeclaredAsNeutral 16 false The game does not have | Static

any piece declared as Neu-
tral

Tic-Tac-Toelud | noUndeclaredPlayerReference 19 true Static
Tic-Tac-Toelud | equalNumberOfPiecesOnTheBoard 24 true Static
Tic-Tac-Toelud | sizeOfTrack 11 false Track concept is mnot | Static
present
Total Tests 7

Success Rate 42.86%
Mean Duration 61.7 ms

Table 4.1: Test results for Tic-Tac-Toe with summary statistics.

4.1.3 CONTROLLER

The Controller is the core orchestrator of our framework, responsible for coordinating the
interactions between the interface and the test logic. It is designed to act as the intermediary
that manages user input, updates the model accordingly, and triggers visual or logical
updates when needed. In our architecture, we distinguish two main responsibilities in the
Controller layer: user interaction handling and test execution. To reflect this, the Controller
is split into two dedicated components: the Base Controller and the Launcher.

BAsE CONTROLLER: CONNECTING VIEW AND MODEL

The Base Controller serves as the entry point of the framework’s logic, managing the
lifecycle of both the Model and the View.

Its primary responsibility is to respond to user interactions, like modifying or inserting
test parameters, and to propagate these changes to the Model. Once the model is updated,
the Base Controller ensures that the View is synchronized, so that test selections, results,
and states are correctly reflected in the user interface.

Additionally, this component acts as a bridge to the Launcher. When a user initiates a test
run, it delegates their execution to the Launcher.

This separation of concerns allows for a clean division between user-triggered events and
the underlying logic that handles test discovery and execution.

LAUNCHER: D1SCOVERY AND EXECUTION OF TESTS

The Launcher is a crucial component of our framework, responsible for executing the tests
selected by the user and for providing the results back to both the Model and the View. It
has several responsibilities: it must dynamically locate the test in the codebase, resolve
and pass the correct parameters, execute the test, and collect its results.

As we can see, these responsibilities are numerous and varied, eventually pushing us to
separate this component from the Base Controller. Otherwise, managing all this logic in a
single class would quickly become too complex. Nevertheless, the Launcher still acts as
a Controller within the MVC architecture: it receives input from the View (i.e., the user

4.1 ARCHITECTURE 29

requesting test execution), accesses the Model to retrieve the relevant data, and invokes
the necessary components to run the test logic.

To understand how the Launcher accomplishes its tasks, we begin by addressing two
fundamental questions:

1. How can the Launcher dynamically locate a test inside the codebase?
2. What information does it need to do this?

An illustrative analogy can help clarify the process: consider using a map service to locate
a specific address. To pinpoint a location, we need to provide complete information, such
as the country, region, city, and street number. In our context, the Launcher similarly
requires precise information: the package name, the class name, the method name, and
any parameters.

All of this information is already gathered and stored within the Model, and it is combined
into what is known as the fully qualified name. As detailed in the Model section 4.1.1, each
TestClass constructs the fully qualified name for each of its methods. With this information,
the Launcher can locate the corresponding test, retrieve and inject the correct parameters
(also obtained from the Model), execute the test, and finally collect the results for reporting
back to the rest of the application.

At this point, we have addressed the second question: what type of information is needed to
locate the test.

The remaining tasks (executing the test, passing parameters, and collecting results) are per-
formed by leveraging features provided by JUNIT5, which we will explore in the following
section.

JUNIT5 INTEGRATION

JUNIT is a widely-used testing library for Java that allows developers to write and run
automated tests [51].

In a typical testing scenario, a developer uses an Integrated Development Environment (IDE)
to run tests separately from the application to ensure code correctness. Such tests verify
the logic behind the code and are typically executed during the build process, independent
of the application runtime.

Our tests differ from the standard approach because they need to be triggered dynamically
while the application is running. In particular, our system requires tests to be executed
based on user input at runtime. This demands a solution that varies from the static test
execution model.

To achieve this, we turned to JUNIT5, which supports dynamic test execution, a core
requirement of our framework.

JUNIT5 introduces several powerful components that we leverage in our implementation:

« Launcher: responsible for triggering the test execution.

« LauncherDiscoveryRequest: used to define which tests should be run and to pass
this information to the Launcher.

« DiscoverySelectors: provide a way to identify which tests to execute, in our case
using the fully qualified method names.

30 4 TESTING FRAMEWORK PROTOTYPE

« ParameterResolver: resolves and injects parameters into test methods at runtime.

« TestTemplateInvocationContextProvider: supplies the execution context for
parameterized tests; in our setup, it works in tandem with the ParameterResolver.

+ SummaryGeneratingListener: provides a summary of the results from the exe-
cuted tests.

Together, these components enable us to dynamically discover test methods within the
codebase, inject the correct user-defined parameters, and collect the test results.

In summary, JUNIT5 provides the core infrastructure that enables dynamic, user-driven
test execution in our framework. The flexibility and extensibility of JUNIT5 make it the
ideal choice for our non-traditional use case.

A more detailed explanation of how these components are integrated is presented in the
following section about implementation details. This will also explain how the Reflection
mechanism and custom annotations are employed to further customize the test execution
process, helping us manage and execute dynamic tests effectively.

4.2 IMPLEMENTATION DETAILS

In this section, we delve into the technical mechanisms underlying the testing framework.
We describe how tests are automatically discovered and executed without manual registra-
tion, the techniques employed to achieve this, and the constraints and design decisions
that arise from these techniques. The focus is on presenting the practical challenges en-
countered during development and the solutions adopted to ensure a robust and scalable
system.

4.2.1 REFLECTION

A fundamental aspect of the framework is the automatic retrieval of tests without manually
listing them, in order to dynamically display the available tests on the dashboard.

To address this, we leveraged Reflection, a powerful technique provided by Java, that allows
the inspection and manipulation of class metadata at runtime. With reflection, we can
examine classes, interfaces, methods, fields, and annotations dynamically, without needing
to know their specifics at compile time [52].

We developed a system in which the Model of the framework is populated by inspecting
the tests package and its subpackages. During this inspection, we dynamically detect all
the test classes and all the test methods contained within them.

The following code snippet illustrates the use of reflection to retrieve test classes and their
public test methods:

Example 4.1: Example of use of reflection to populate TestClass and its methods

for (TestClass testClass : testClasses) {
try {
Class<?> clazz = Class.forName(testClass.getFullyQualifiedName()) ;
for (Method method : clazz.getDeclaredMethods()) {

if (method.isAnnotationPresent(TestTemplate.class)) {
testClass.addMethod(new TestMethod(method)) ;

o e v o o=

4.2 IMPLEMENTATION DETAILS 31

}

}
} catch (ClassNotFoundException e) {
throw new RuntimeException("Test class not found: " +
testClass.getFullyQualifiedName(), e);
}
}
In this example, Class.forName(...) retrieves a Class object corresponding to a test class, such
as BoardTest. To correctly load the class, the system requires the fully qualified name of the
class, that is, the complete path including the package structure (e.g., tests.board.BoardTest).
Once the class is loaded, reflection allows us to access its testing methods (identified by the
@TestTemplate annotation), which are then added to the Model for display and execution.

This mechanism is extremely fast and powerful. However, it also introduces an important
constraint: precision in the project’s organization is critical. As detailed in Section 3.3, we
enforce a strict convention where each concept has its own package and each test class is
named consistently by appending Test to the chosen class name. This consistency is not
optional since the dynamic discovery system depends on it.

The weakness of reflection mechanisms is that they are sensitive to structural changes.
For example, if we decided to rename the class BoardTest.java to TestBoard.java without
updating the system accordingly, the framework would no longer be able to find the
test. Similarly, changing the directory structure would break the fully qualified name
construction unless handled explicitly. Therefore, careful organizational decisions, such as
the package and class naming strategy, were necessary from the outset.

4.2.2 CusTOM ANNOTATION

Before diving into how our framework dynamically discovers and executes tests using
JUNIT5 componenets, it’s important to explain a key technical feature we leverage: Java
annotations.

Annotations allow to attach metadata to code elements, such as classes, methods, or
parameters. JUNIT5 relies heavily on annotations to define test behavior. In our framework,
we also define a custom annotation to support a specific requirement: default parameters
for tests.

As described in the View section 4.1.2, Ludii developers can configure test parameters
through a dialog in the dashboard. In some cases, tests may offer default values for these
parameters. Such values are automatically filled in when the test appears in the dashboard
but developers can still modify them. To manage this, our model includes two fields, as
reported in Model section 4.1.1: value, which stores the eventual value set by the user, and
defaultValue, which stores the original default value defined by the test itself.

We needed a way to associate these default values directly with method parameters, and
for that, we created the @DefaultParameter annotation, shown in 4.2.

Example 4.2: Custom Annotation: @DefaultParameter

@Retention(RetentionPolicy.RUNTIME)
@Target (ElementType.PARAMETER)
public e@einterface DefaultParameter {

String value();

[

32 4 TESTING FRAMEWORK PROTOTYPE

}

The @Retention(RetentionPolicy. RUNTIME)! part is crucial, as it ensures that the
annotation is available at runtime, which is necessary for our framework to inspect it via
reflection. In fact, we use reflection to scan each test method’s parameters. If a parameter
is annotated with @DefaultParameter, we simply flag it as such. Here’s the relevant code
snippet:

Example 4.3: Reflection with Custom Annotation

for(Parameter p: method.getParameters()) {
String value = null;
if (p.isAnnotationPresent (DefaultParameter.class)) {

value = p.getAnnotation(DefaultParameter.class).value();
parameters.put(p.getName(), new TestParameter(p.getType(), value, true));
continue;

}

parameters.put(p.getName(), new TestParameter(p.getType(), value, false));

}

The defaultValue plays an important role: when the user reruns a test or resets the Ul the
original default values can be restored reliably.

For readers familiar with JUNIT annotations, a natural question may arise: why not use
existing annotations such as @ ValueSource or @ CsvSource to specify default parameters?
While these annotations are available at runtime, they are not suitable for our needs.
@ValueSource only supports methods with a single parameter, while @CsvSource requires
specifying values for all parameters of a method. Neither of them allows associating a
default value to an individual parameter independently. In contrast, our custom @Default-
Parameter annotation directly associates a default value with a specific parameter, which
is more flexible, cleaner and better suited for our case.

4.2.3 D1sCOVERY AND EXECUTION WITH JUNIT5 COMPONENTS

To illustrate how JUNIT5 components are used for test discovery and execution, we first
present an example of how a test class with a test method should be written in our frame-
work. The following example 4.4 shows a BoardTest class and a test that checks whether,
if the Line concept is present in the game, its dimension is less than or equal to the maxi-
mum side of the board. The method uses the @DefaultParameter annotation, explained
earlier, and the @Tag annotation, which is used to categorize the test. Both of these
annotations are straightforward. However, two additional annotations are crucial: @Ex-
tendWith(ParametersContextProvider.class) on the test class, and @TestTemplate
on the test method.

Example 4.4: Example of a test in our framework

@Extendwith(ParametersContextProvider.class)
public class BoardTest {

docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/annotation/RetentionPolicy.html

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/annotation/RetentionPolicy.html

19

4.2 IMPLEMENTATION DETAILS 33

@TestTemplate

@Tag("Static")

public void lineLessOrEqualThanBoardSide(String gameName,
@DefaultParameter("3") int lineLength) {

Game game = GameLoader.loadGameFromName (gameName) ;
BitSet concepts = game.computeBooleanConcepts();

if (!concepts.get(Concept.Line.id())) {
fail("Line concept is not present");
}

int side = game.board().graph().maxDim();
assertTrue(lineLength <= side, "Line should be less than or equal to board
side");

}

A TestTemplate method, according to the JUNIT5 specification, is designed to serve as a
template for test cases that are invoked multiple times with different parameters. In our
framework, every test is a template: what distinguishes each test instance are the runtime
parameters.

In this example, the test includes a parameter to identify the game. This parameter is
implicitly included in every test and allows the same method to be invoked across multiple
games. While a @TestTemplate resembles a regular JUNIT test, it requires additional setup
to inject parameters. This is where the @ExtendWith(ParametersContextProvider.class)
annotation plays a critical role.

As introduced earlier with the @DefaultParameter, parameter values are retrieved at
runtime and this annotation serves as a wrapper for default values. This may raise a
question: how are parameters that are not marked as default, such as the String representing
the game passed to the test when it is executed?

The answer lies in the @ ExtendWith(ParametersContextProvider.class) annotation.
The ParametersContextProvider class extends TestTemplateInvocationContextProvider,
described in Section 4.1.3, and is responsible for supplying the execution context for
parameterized tests.

Before invoking the JUNIT launcher, we must deliver this provider with a mapping of
parameter values for each test method. Even when a test seems to have no parameters,
our system always includes at least one implicit parameter: the name of the game. This
provider also supplies a ParameterResolver for each test method, as well presented in
Section 4.1.3, that parses and injects the correct parameter values at runtime. Since all
values are received as strings from the user dashboard, parsing them into the correct types
is essential. For this reason we store the expected type of each parameter using a Class<?>
object, as described in Section 4.1.1.

Once the required parameters have been configured in the ParametersContextProvider, test
discovery and execution proceed in a structured sequence. Each test method is identified
using its fully qualified name, which is passed to DiscoverySelectors to locate the method
in the codebase. These selectors are collected into a LauncherDiscoveryRequest, which is
passed to the JUNIT Launcher. Finally, execution results are collected via a TestSumma-
ryListener, which extends SummaryGeneratingListener and records durations and failure
messages.

34 4 TESTING FRAMEWORK PROTOTYPE

Example 4.5: Sequence of steps to discover and execute tests using the JUNIT5 Launcher API
ParametersContextProvider.setUserInputs(inputs);
LauncherDiscoveryRequest request = LauncherDiscoveryRequestBuilder.request()

.selectors(selectorsList)
.build();

TestSummaryListener listener = new TestSummaryListener();
launcher.execute(request, listener);

updateTestResults(selectedMethods, listener);

This chapter has illustrated the design and realization of the testing framework prototype,
emphasizing its role in supporting Ludii game development through structured and auto-
mated testing. By adopting the MVC architecture and leveraging JUNIT5, Java reflection,
and both standard and custom annotations, the implementation ensures modularity, exten-
sibility, and ease of integration. These design choices collectively contribute to a robust
foundation for reliable and maintainable test development within the Ludii platform.

35

VALIDATION

The objective of this thesis has been to develop a testing framework capable of supporting
the TDGD methodology, which integrates the principles of TDD into the design and
development of games. To achieve this, two core components were required: a graphical
dashboard for interaction and a database of tests applicable to the wide range of games
supported by the Ludii GGS.

Validating the solution entails confirming two primary aspects:

1. The GUI must be user-friendly, accessible, and capable of integrating and executing
tests dynamically during development.

2. The database of tests must be sufficiently generic to support a wide variety of games.

The combination of these two elements enables the adoption of TDD in the context of
game development within the Ludii platform.

5.1 GUI VALIDATION

The GUI was tested manually, focusing primarily on robustness in edge cases. The objective
was to evaluate how the system behaves when interacting with unexpected or incomplete
user inputs. Examples of tested scenarios include:

+ Attempting to run tests without selecting any.
« Failing to provide a mandatory parameter.

« Interacting with disabled or unavailable options.

This approach allowed us to identify weak points in the interface and improve error
handling and user feedback mechanisms. For instance, validation was added to prevent test
execution without proper input, and messages were introduced to inform users of missing
selections or invalid configurations.

The interface successfully handled all tested edge cases. The improvements introduced
after testing have made the dashboard more stable and predictable in real usage scenarios,
confirming that the GUI is functionally sound and provides a responsive and intuitive
experience.

36 VALIDATION

5.2 TEST GENERALITY VALIDATION

To validate the generality of the tests, we used the export functionality (explained in
the View section 4.1.2) to analyze test execution results across a large number of games.
Specifically:

« Games tested: 1127
« Total tests executed: 7889
« Number of unique test types: 7 (static tests)

The validation focused on determining whether the current set of tests could apply across
diverse game types without failure or adaptation. The selection of games included only
a subset of the Ludii repository, focusing on board games, dominoes, math games, and
puzzles. Despite the limited test suite, the large number of test runs made it possible to
draw meaningful insights about test behavior and coverage. The overall test result yields a
success rate of 36.68%, with an average execution time of 83 milliseconds per test.

As shown in Figure 5.1, four tests account for the majority of failures. Two of them,
sizeOf Track and lineLessOrEqualThanBoardSide, are customizable tests, requiring
user-supplied parameters. The former checks the length of a track owned by a player,
and thus needs both a player identifier and an expected track length. The latter ensures
that any Line ludeme defined in the game does not exceed the longest side of the board.
When running the tests across all games, we set these parameters to 0 by default to prevent
missing-parameter errors. Consequently, many failures were expected.

Number of Failures per Test

1000 1
800
400
200
i ——
X

Number of Failures
o
o
o

o

>
& < S & < & <
& & N o & © <@
o N $ 2 \a 2 X
@ 2 ¥ o O N @
& & & © & o &
& & & & & 2
X O A Q Vo3 QX
& @ 2 P & X
> & N & & &
& & & N 9 R
& & o Q & O
< N & O g
N & N
e & S
& \;z} <

Tests
Figure 5.1: Number of failures per test

The other two high-failure tests, pieceDeclaredAsNeutral and pieceDeclaredAsShared,
verify whether specific piece usage conventions are respected. These are general-purpose
tests and apply across all games.

5.2 TEST GENERALITY VALIDATION 37

Distribution of Failure Reasons

The game does not have any piece declared as
Neutral

Line concept is not present

The game does not have any piece declared as
Shared

Track concept is not present

The game does not have any piece declared as Each

A Shared Piece must appear at least twice in the
description

The owner 0 does not have a track

Failure Reason

Ludeme Each for a Piece requires at least one
definition of PieceN, with N > 0

The length of the track is N

Cannot read the array length because "this.dim" is
null

Players do not have the same number of pieces
A piece declared Neutral must be called as piece0

P3 is not declared

0 200 400 600 800 1000
Number of Failures

Figure 5.2: Failing reasons of tests

Figure 5.2 provides a breakdown of the primary failure reasons. The most common causes
are that the concept targeted by the test (e.g. Track concept) or the specific feature (e.g. Neu-
tral piece) are not present in the game. For instance, sizeOf Track often fails simply because
the game does not define a Track, and similarly with Line for lineLessOrEqualThanBoard-
Side. These are not actual errors, as Ludii supports a vast array of mechanics, and it is
reasonable for many games to not have such features. Table 5.1 supports this observation.
Among all failing tests, 83.29% are due to the targeted concept or feature missing, which
implies that the majority of failures are expected and not indicative of incorrect logic.

In a TDGD workflow, such tests become particularly valuable. They are not merely checks
for correctness, but instruments that actively drive the development. For example, if a Ludii
developer knows that a piece should be declared as Shared, running the corresponding
test will initially result in a failure, highlighting the missing concept. After modifying the
game description accordingly, the developer can observe the test passing, confirming the
correct implementation. Conversely, if the piece should not be declared as Shared, the
test is expected to fail, confirming that the piece is indeed not marked as Shared. In this
sense, test failures, when properly interpreted, can be used not only to detect errors but to
confirm intentional design choices.

Excluding the concept-missing cases, we also observed input-related failures. For example,

38 VALIDATION

in the sizeOf Track test, the failure messages The length of the track is N' and The owner
0 does not have a track? suggest that the test logic works correctly, merely failing due
to placeholder parameters. These results are encouraging, as they indicate that the test
mechanism itself is sound.

Other failure types are more complex. At this stage, it remains unclear whether these
failures are due to faulty test logic or incorrect game descriptions. Fortunately, they
represent a minority of the total failures.

Table 5.1: Distribution of Specific Failure Messages

Failure Message # Failing Tests | % of All Tests | % of Failed Tests
The game does not have any 1084 13.74% 21.70%
piece declared as Neutral

Line concept is not present 999 12.66% 20.00%
The game does not have any 893 11.32% 17.88%
piece declared as Shared

Track concept is not present 759 9.62% 15.20%
The game does not have any 425 5.39% 8.51%
piece declared as Each

Total for these specific 4160 52.73% 83.29%
failures

Running all tests enabled us to assess the reliability and robustness of the testing framework.
Notably, this process revealed the presence of subgames in certain Ludii games that we did
not consider. As discussed in Section 2.3.1, ludemes can be compound, meaning they may
be composed of other ludemes, such as the subgame ludeme. Games constructed in this
way require special handling, as many of their internal components are initialized only
after the game is started. Initially, the tests failed to account for this behavior, relying solely
on information available at compile-time, prior to execution. This resulted in unexpected
failures and exceptions. We resolved the issue by ensuring such games are explicitly started
before the test logic is applied.

This observation highlights a broader challenge: Ludii’s GDL supports a wide variety
of game representations, each with distinct mechanics and structural properties. As a
result, building a generic and reusable test suite is non-trivial, since it must accommodate
numerous scenarios and game constructs. Nevertheless, executing tests across a wide
selection of games proves extremely beneficial, as it helps construct a more robust, general
and comprehensive dataset for test development.

During the analysis of test failures, we discovered that certain valid game constructs were
not correctly handled by our initial implementation. One such case involved the correct
verification of piece declared as Each. When a piece is declared as Each (e.g. (piece "Disc"
Each)), it means that each player owns their own instance of that piece. Usually, game
descriptions refer to such instances with player-specific identifiers, such as Disc1 for player

IThe test calculates the actual length of the track (e.g., The length of the track is 16); however, for presentation
purposes, such messages were grouped under a single representative category.
2When the owner is 0, the track is shared among players.

5.2 TEST GENERALITY VALIDATION 39

1’s Disc. Our test, pieceDeclaredAsEach, correctly checked for this behavior. However, this
approach did not cover all valid uses of a piece declared as Each. For example, in some
games, the Each piece is used in combination with the Hand ludeme. Even though the piece
is correctly declared as Each, the game description may contain a line like (place "Disc"
"Hand"), which places each player’s own Disc into their hand. In such cases, identifiers like
Disc1 do not appear; our initial test did not account for this, and incorrectly marked these
descriptions as invalid. After updating the test to support this type of usage, our validation
success rate improved by nearly 7%, a significant gain in both coverage and accuracy.
However, from the result summary in Figure 5.2, we observe that a considerable number of
tests (almost 200) still fail due to what appears to be an incorrect interpretation of pieces
declared as Each. This suggests that there may exist other valid ways to define or refer to
such pieces, which remain unknown in the current specification. Further analysis will be
necessary to identify these patterns and extend test coverage accordingly.

The validation results confirm that the proposed framework meets the essential require-
ments to support a TDD-oriented workflow in Ludii. The dashboard has proven to be both
responsive and user-friendly, handling various edge cases effectively and providing reliable
feedback during interaction.

As for the tests, although the current suite is limited in number, the majority have demon-
strated both soundness and generality. Their successful execution across a wide range
of games highlights their potential as foundational components of a broader and more
comprehensive test database. These initial results are encouraging and establish a solid
basis for future expansion and refinement of the testing suite.

41

FUTURE WORK

This chapter outlines the possible enhancements and open challenges for the testing
framework. Building upon the limitations discussed previously, future work focuses on
four main areas: refining the existing static tests, developing robust strategies for dynamic
tests, improving the dashboard interface to better support users’ needs, enabling users to
create their own customizable tests. The following sections detail these priorities and the
approaches considered for their resolution.

6.1 STATIC TESTS REFINEMENT

The previous chapter has highlighted certain limitations of the current prototype, which
naturally suggest the next steps for improving the system.

First, the existing static tests require further analysis to clarify the causes of the remaining
unexplained failures. It is currently unclear whether these failures are due to flaws in the
test logic or inaccuracies in the game descriptions. A systematic investigation is necessary
to distinguish between these two possibilities and refine both components accordingly.

6.2 DynaMIcC TESTS

The current test database lacks dynamic tests, although their theoretical foundation and
intended role were discussed extensively in their dedicated section. One key open problem
in this context is determining the appropriate duration for test simulations. Specifically, it
remains to be defined whether a test should require full-game simulations or if a limited
number of moves (e.g., the first N moves) is sufficient to validate the intended conditions.
To address this challenge, we propose the implementation of an accuracy configuration
tool. This feature would allow Ludii developers to specify the desired accuracy threshold
for a test. For example, a 100% accuracy requirement would result in simulations running
until the end of the game or until the maximum number of trials permitted by Ludii is
reached. Lower thresholds could result in shorter simulations, balancing performance with
confidence in the test outcome.

42 6 FUTURE WORK

This approach would provide flexibility in managing the trade-off between execution time
and validation accuracy, enabling more practical and scalable use of runtime tests across a
large number of games.

However, this solution raises an inherent challenge: how should the system determine
the appropriate ratio between the number of simulated moves and the desired level of
accuracy? Given the substantial diversity among games in Ludii, ranging from very short
to extremely long and complex, there is no universally optimal value for such a ratio. In
many games, reaching a conclusive end state may require a large number of moves, making
full simulations impractical for routine testing.

For this reason, a more practical approach may be to allow the Ludii developer to explicitly
specify either the number of moves to simulate or a concrete in-game condition that
terminates the simulation (e.g., the first capture or the end of a phase). This strategy
delegates the responsibility to domain experts who are best positioned to judge what
constitutes a meaningful simulation for each individual game.

6.3 DASHBOARD ENHANCEMENTS

Additional enhancements are planned for the dashboard component. First, we intend to
expand the report creation functionality by allowing users to customize which information
is included in the generated reports. Furthermore, we aim to augment the report with
analytical metrics, such as the average number of tests per concept. This would provide
insight into which concepts are thoroughly tested and which remain underrepresented,
thereby guiding future test development.

Another significant improvement would be the implementation of test filtering within
the dashboard, based on the concepts associated with a specific game. This would enable
users to narrow down the set of relevant tests, especially useful in the presence of a large
database. However, enabling such functionality requires extending the current model to
store the set of concepts associated with each game.

6.4 CusTOMIZABLE TESTS CREATION

A key future enhancement is to enable users to create customizable tests directly through
the GUIL This will involve integrating an Al-based test generation system that leverages a
comprehensive test database once it is fully developed. The AI would learn from existing
test patterns and understand the code structures required to generate new tests based
on the database. Users would provide natural language prompts describing their testing
objectives, and the Al would generate tests appropriately aligned with the game logic and
user requirements. Among the challenges to address are ensuring the accuracy, reliability,
and maintainability of Al-generated tests.

Such a concept is becoming increasingly viable due to recent advances in Al-assisted
software engineering. Notable examples include:

« TestForge [53]: this system begins by zero-shot prompting a large language model
(LLM) with the code under test. It then progressively refines the generated tests over
multiple iterations, focusing on undercovered lines or regions with low mutation
scores. TestForge integrates detailed execution feedback, including compilation

6.4 CusTOMIZABLE TESTS CREATION 43

errors, runtime failures, and uncovered code segments, into an agentic feedback loop,
enabling it to improve test quality iteratively.

- Diffblue Cover!: a reinforcement learning-based Al platform that autonomously
generates comprehensive, human-readable unit tests for Java and Kotlin projects. It
can automatically create and maintain an entire test suite as the software evolves.
Similar to TestForge, Diffblue Cover follows an iterative process: it writes an initial
test candidate for each method, evaluates coverage and correctness, and refines the
tests until code coverage is maximized.

« SmartUnit [54]: originally developed for embedded software, SmartUnit consists
of a dynamic symbolic execution engine, a unit test generator, and a cloud-based
service. It analyzes control-flow and data-flow paths in the source code to generate
effective test inputs, enabling high path coverage and early bug detection.

These represent only a subset of the potential improvements that can benefit our prototype
testing framework. Numerous additional enhancements and modifications may be imple-
mented to further advance our initial work, which aims to establish a solid foundation for
a robust supporting tool within the Ludii GGS.

lwww.diffblue.com

www.diffblue.com

45

CONCLUSION

In the domain of GGSs, Ludii stands out for its expressive ludeme-based language, which
enables a wide variety of games to be described in a human-readable yet semantically
rich format. This flexibility makes Ludii accessible to a broad audience, including game
historians and enthusiasts with limited or no programming experience. However, its
current validation mechanisms are limited, relying solely on the execution of a few game
trials and without offering sufficient guarantees regarding the correctness and robustness
of complex game implementations.

This thesis addressed this limitation by introducing a dedicated testing framework and
exploring the feasibility of adopting a TDD approach for game development. The framework
features a dashboard-based interface and a structured dataset of tests, divided into two
categories: static and dynamic. Static tests focus on compile-time validation, identifying
syntactic and semantic issues in game descriptions. Dynamic tests, in contrast, require
runtime evaluation over multiple game trials to verify specific game states and behaviors.
The effectiveness of this solution was validated through several strategies. The dashboard
demonstrated resilience to edge cases, providing responsive feedback and robust error
handling. Furthermore, despite the limited number of static tests, the suite was executed
across over a thousand Ludii games, achieving a success rate of 36.68%. While this figure
may appear modest, it is important to note that 83.29% of the failures are expected, deriving
from concepts or features that are deliberately excluded in game descriptions. These results
confirm both the soundness of the test logic and its applicability across diverse game
categories.

Looking forward, this project lays the groundwork for multiple promising extensions. A
key priority is the full integration of dynamic tests, which will enhance the framework’s
ability to validate behavioral properties through simulation. Additionally, a systematic
investigation is required to understand whether unexplained test failures are caused by
inaccuracies in test logic or flaws in the underlying game descriptions.

Further development will also focus on improving the dashboard’s usability and empower-
ing users to define and run custom tests, thereby increasing the flexibility and adaptability
of the framework.

46 CONCLUSION

In conclusion, this work establishes a foundation for reliable and automated validation
within Ludii, representing a significant step toward bridging the gap between formal
software engineering practices and general game design. By enabling structured and
repeatable testing, it contributes to the development of more robust, maintainable, and
accessible games within the Ludii GGS.

REFERENCES 47

REFERENCES

(1]

(7]

(8]

Cameron Browne, Eric Piette, Matthew Stephenson, and Dennis J. N. J. Soemers. Ludii
General Game System for Modeling, Analyzing, and Designing Board Games. In
Newton Lee, editor, Encyclopedia of Computer Graphics and Games, pages 1082-1095.
Springer International Publishing, Cham, 2023.

Graham Todd, Alexander Padula, Matthew Stephenson, Eric Piette, Dennis J. N. J.
Soemers, and Julian Togelius. GAVEL: Generating Games Via Evolution and Lan-
guage Models. In Proceedings of the Neural Information Processing Systems Conference
(NeurlIPS), 2024.

Michael Genesereth and Yngvi Bjornsson. The international general game playing
competition. Al Magazine, 34(2):107-107, 2013.

Cameron Bolitho Browne. Automatic generation and evaluation of recombination
games. PhD thesis, Queensland University of Technology, 2008.

Eric Piette, Matthew Stephenson, Dennis J. N. J. Soemers, Chiara Sironi, Mark H. M.
Winands, and Cameron Browne. Ludii - the ludemic general game system. In European
Conference on Artificial Intelligence (ECAI), 2020.

Eric Piette, Cameron Browne, and Dennis J. N. J. Soemers. Ludii Game Logic Guide.
arXiv:2101.02120, 2021.

Dennis J. N. J. Soemers, Eric Piette, Matthew Stephenson, and Cameron Browne. Ludii
User Guide. https://ludii.games, 2019.

Kent Beck. Test Driven Development: By Example. Addison-Wesley Professional, 2022.

[9] Jacques Pitrat. Realization of a general game-playing program. In IFIP Congress (2),

(10]

(11]

(12]

(13]

(14]

pages 1570-1574, 1968. (Cited on pages 3, 48, and 275).

Michael Genesereth and Michael Thielscher. General Game Playing. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, San
Rafael, CA, 2014. (Cited on pages 49 and 80).

Cameron Browne, Dennis J. N.J. Soemers, Eric Piette, Matthew Stephenson, and Walter
Crist. Ludii Language Reference. https://ludii.games/downloads/
LudiiLanguageReference. pdf, 2020.

Ben Goertzel and Cassio Pennachin. Artificial general intelligence, volume 2. Springer,
2007.

Cameron Browne, Julian Togelius, and Nathan Sturtevant. Guest editorial: General
games. IEEE Transactions on Computational Intelligence and Al in Games, 6(04):317-319,
2014.

Matthew Stephenson, Dennis J. N. J. Soemers, Eric Piette, and Cameron Browne.
Measuring Board Game Distance. In Computer Games (CG), 2022.

https://ludii.games
https://ludii.games/downloads/LudiiLanguageReference.pdf
https://ludii.games/downloads/LudiiLanguageReference.pdf

48

REFERENCES

[15]

[19]

[20]

[22]

Anders Kierulf, Ken Chen, and Jurg Nievergelt. Smart game board and go explorer: A
study in software and knowledge engineering. Communications of the ACM, 33(2):152-
166, 1990.

Michael Genesereth, Nathaniel Love, and Barney Pell. General game playing:
Overview of the AAAI competition. Al magazine, 26(2):62-62, 2005.

Frédéric Koriche, Sylvain Lagrue, Eric Piette, and Sébastien Tabary. WoodStock:
Un programme-joueur générique dirigé par les contraintes stochastiques. Revue
d’Intelligence Artificielle (RIA), 2017. Numéro spécial “TA des jeux informatisés”.

Frédéric Koriche, Sylvain Lagrue, Eric Piette, and Sébastien Tabary. Constraint-based
symmetry detection in general game playing. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI), 2017.

Eric Piette. Une nouvelle approche au General Game Playing dirigée par les contraintes.
Phd thesis, Université d’Artois, France, 2016.

Jakub Kowalski, Maksymilian Mika, Jakub Sutowicz, and Marek Szykula. Regular
boardgames. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 1699-1706, 2019.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki
Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan
Omidshafiei, Daniel Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner,
Janos Kramar, Bart De Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian
Borgeaud, Matthew Lai, Julian Schrittwieser, Thomas Anthony, Edward Hughes,
Ivo Danihelka, and Jonah Ryan-Davis. Openspiel: A framework for reinforcement
learning in games, 2020.

Tristan Cazenave, Yen-Chi Chen, Guan-Wei Chen, Shi-Yu Chen, Xian-Dong Chiu,
Julien Dehos, Maria Elsa, Qucheng Gong, Hengyuan Hu, Vasil Khalidov, Cheng-Ling
Li, Hsin-I Lin, Yu-Jin Lin, Xavier Martinet, Vegard Mella, Jeremy Rapin, Baptiste
Roziere, Gabriel Synnaeve, Fabien Teytaud, Olivier Teytaud, Shi-Cheng Ye, Yi-Jun Ye,
Shi-Jim Yen, and Sergey Zagoruyko. Polygames: Improved zero learning, 2020.

Stephan Schiffel and Michael Thielscher. Representing and reasoning about the rules
of general games with imperfect information. Journal of Artificial Intelligence Research,
49:171-206, 2014.

Michael Thielscher. GDL-III: a description language for epistemic general game
playing. Proceedings of the 26th International Joint Conference on Artificial Intelligence,
2017.

Cameron Browne, Matthew Stephenson, Eric Piette, and Dennis JNJ Soemers. A
practical introduction to the ludii general game system. In Advances in Computer
Games, pages 167-179. Springer, 2019.

REFERENCES 49

(26]

(27]

(28]

[29]

(37]

(38]

Matthew Stephenson, Eric Piette, Dennis JNJ Soemers, and Cameron Browne. An
overview of the ludii general game system. In 2019 IEEE Conference on Games (CoG),
pages 1-2. IEEE, 2019.

Matthew Stephenson, Eric Piette, and Cameron Browne. Teaching and Learning with
LUDIIL. Board Game Studies (BGS), 2019.

Walter Crist, Matthew Stephenson, Eric Piette, and Cameron Browne. The ludii games
database: A resource for computational and cultural research on traditional board
games. DHQ: Digital Humanities Quarterly, 18(4), 2024.

Walter Crist, Eric Piette, Dennis J. N. J. Soemers, Matthew Stephenson, and Cameron
Browne. Computational Approaches for Recognising and Reconstructing Ancient
Games: The Case of Ludus Latrunculorum. In The Archaeology of Play: Material
Approaches to Games and Gaming in the Ancient World, Véronique Dasen and Marco
Vespa (Eds.). Oxbow, Oxford, 2024.

Eric Piette, Lisa Rougetet, Walter Crist, Matthew Stephenson, DJNJ Soemers, and
Cameron Browne. A ludii analysis of the French Military Game. Board Game Studies
(BGS), 2021.

Dennis J. N. J. Soemers, Jakub Kowalski, Walter Crist, Summer Courts, Tim Penn, and
Eric Piette. Bridging Al and Cultural Heritage: Outcomes from the GameTable WG1
London Meeting. International Computer Games Association Journal (ICGA), 2025.

Cameron Browne. A class grammar for general games. In Aske Plaat, Walter Kosters,
and Jaap van den Herik, editors, Computers and Games, pages 167-182, Cham, 2016.
Springer International Publishing.

A. Borvo. Anatomie d’un jeu de cartes: L’Aluette ou le jeu de Vache. Librairie Nantaise
Yves Vachon, Nantes, 1977.

Cameron Browne. Everything’s a Ludeme Well, Almost Everything. In XXIII BOARD
GAME STUDIES COLLOQUIUM-The Evolutions of Board Games, 2021.

Eric Piette, Matthew Stephenson, Dennis JNJ Soemers, and Cameron Browne. An
empirical evaluation of two general game systems: Ludii and RGB. In IEEE Conference
on Games (CoG), pages 1-4, 2019.

Matthew Stephenson, Eric Piette, Dennis J. N. J. Soemers, and Cameron Browne.
Automatic generation of board game manuals. In Advances in Computer Games (ACG),
2021.

Cameron Browne and Eric Piette. Digital Archaeoludology. Computer Applications
and Quantitative Methods in Archaeology (CAA), 2019.

Cameron Browne, Dennis J. N. J. Soemers, Eric Piette, Matthew Stephenson, Michael
Conrad, Walter Crist, Thierry Depaulis, Eddie Duggan, Fred Horn, Steven Kelk,
Simon M. Lucas, Jodo Pedro Neto, David Parlett, Abdallah Saffidine, Ulrich Schadler,
Jorge Nuno Silva, Alex de Voogt, and Mark H. M. Winands. Foundations of Digital
Archeoludology. Report, Dagstuhl Research Meeting, 2019.

50

REFERENCES

[39]

[40]

[41]

[42]

[43]

[44]

[47]

(48]

[49]

Eric Piette, Walter Crist, Dennis J. N. J. Soemers, Lisa Rougetet, Summer Courts, Tim
Penn, and Achille Morenville. GameTable COST Action: kickoff report. International
Computer Games Association (ICGA) Journal, 2024.

Eric Piette, Achille Morenville, Barbara Care, Dorina Moullou, and Walter Crist. Ai-
powered game recognition: A collaborative dataset for traditional games. In Computer
Applications and Quantitative Methods in Archaeology (CAA), 2025.

Dennis J.N.J. Soemers, Eric Piette, Matthew Stephenson, and Cameron Browne. The
ludii game description language is universal. In IEEE Conference on Games (CoG),
2024.

Achille Morenville and Eric Piette. Belief Stochastic Game: A Model for Imperfect-
Information Games with Known Positions. In Computer and Games (CG), 2024.

Eric Piette, Matthew Stephenson, Dennis JNJ Soemers, and Cameron Browne. General
board game concepts. In IEEE Conference on Games (CoG), pages 01-08, 2021.

D. Janzen and H. Saiedian. Test-driven development concepts, taxonomy, and future
direction. Computer, 38(9):43-50, 2005.

Kent Beck. Aim, fire [test-first coding]. IEEE Software, 18(5):87-89, 2001.

Dua Agha, Rashida Sohail, Areej Meghji, Ramsha Qaboolio, and Sania Bhatti. Test
driven development and its impact on program design and software quality: A sys-
tematic literature review. VAWKUM Transactions on Computer Sciences, 11:268-280,
06 2023.

Noel Llopis and Sean Houghton. Backwards is forward: Making better games with
test-driven development. Game Developers Conference, 2006. https://www.
convexhull.com/articles/tdd_gdc06.pdf.

Dennis J.N.J. Soemers, Eric Piette, Matthew Stephenson, and Cameron Browne. Op-
timised Playout Implementations for the Ludii General Game System. Advances in
Computer Games (ACG), 2021.

Vincent Massol. JUnit in action. Citeseer, 2004.

[50] James Bucanek. Model-view-controller pattern. Learn Objective-C for Java Developers,

[51]

[52]

[53]

pages 353—-402, 2009.
Frank Appel. Testing with JUnit. Packt Publishing Ltd, 2015.

Ira R. Forman and Nate Forman. Java Reflection in Action (In Action series). Manning
Publications Co., USA, 2004.

Kush Jain and Claire Le Goues. Testforge: Feedback-driven, agentic test suite genera-
tion, 2025.

https://www.convexhull.com/articles/tdd_gdc06.pdf
https://www.convexhull.com/articles/tdd_gdc06.pdf

REFERENCES 51

[54] Chengyu Zhang, Yichen Yan, Hanru Zhou, Yinbo Yao, Ke Wu, Ting Su, Weikai Miao,
and Geguang Pu. Smartunit: Empirical evaluations for automated unit testing of
embedded software in industry. In 2018 IEEE/ACM 40th International Conference

on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP), pages
296-305, 2018.

53

GLOSSARY

AGI Artificial General Intelligence.
Al Artificial Intelligence.

API Application Programming Interface.

GDL Game Description Language.
GGP General Game Playing.
GGS General Game Systems.

GUI Graphical User Interface.

IDE Integrated Development Environment.
MVC Model-View-Controller.

RBG Regular Boardgames.

TDD Test-Driven Development.

TDGD Test-Driven Game Development.

55

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2

LisT OF FIGURES

Categories of Ludemes [6] 10
Categoriesof Concepts 11
Iterative steps of the TDD approach 12
Example of a semantically valid and invalid ludeme description of Tic-Tac-Toe 16
Incorrect computation of scoreinReversi 19
Model-View-Controller architecture for our framework 24
Class Diagram of our Model 25
Integrated testing dashboard in the Ludii editor 26
Integrated testing dashboard in the Ludii editor with results 27
Number of failures pertest 36

Failing reasonsof tests L .. 37

57

2.1

3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5

LISTINGS

Havannah description using Ludeme (Source: github.com/Ludeme/

Ludii) 8
Computation of score with ludeme description 19
Test package organization 20
Test package organization with sub-concepts 21
Example of use of reflection to populate TestClass and its methods 30
Custom Annotation: @DefaultParameter 31
Reflection with Custom Annotation 32
Example of a test in our framework L. 32

Sequence of steps to discover and execute tests using the JUNIT5 Launcher

github.com/Ludeme/Ludii
github.com/Ludeme/Ludii

L}NIVERSITE CATHOLIQUE DE LOUVAIN
Ecole polytechnique de Louvain

Rue Archiméde, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl

